Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 19(6): e1011432, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311004

RESUMO

BACKGROUND: SARS-CoV-2 emerged as a new coronavirus causing COVID-19, and it has been responsible for more than 760 million cases and 6.8 million deaths worldwide until March 2023. Although infected individuals could be asymptomatic, other patients presented heterogeneity and a wide range of symptoms. Therefore, identifying those infected individuals and being able to classify them according to their expected severity could help target health efforts more effectively. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we wanted to develop a machine learning model to predict those who will develop severe disease at the moment of hospital admission. We recruited 75 individuals and analysed innate and adaptive immune system subsets by flow cytometry. Also, we collected clinical and biochemical information. The objective of the study was to leverage machine learning techniques to identify clinical features associated with disease severity progression. Additionally, the study sought to elucidate the specific cellular subsets involved in the disease following the onset of symptoms. Among the several machine learning models tested, we found that the Elastic Net model was the better to predict the severity score according to a modified WHO classification. This model was able to predict the severity score of 72 out of 75 individuals. Besides, all the machine learning models revealed that CD38+ Treg and CD16+ CD56neg HLA-DR+ NK cells were highly correlated with the severity. CONCLUSIONS/SIGNIFICANCE: The Elastic Net model could stratify the uninfected individuals and the COVID-19 patients from asymptomatic to severe COVID-19 patients. On the other hand, these cellular subsets presented here could help to understand better the induction and progression of the symptoms in COVID-19 individuals.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Hospitalização , Citometria de Fluxo , Hospitais
2.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884980

RESUMO

Vaccination against SARS-CoV-2 has become the main method of reducing mortality and severity of COVID-19. This work aims to study the evolution of the cellular and humoral responses conferred by two mRNA vaccines after two doses against SARS-CoV-2. On days 30 and 240 after the second dose of both vaccines, the anti-S antibodies in plasma were evaluated from 82 volunteers vaccinated with BNT162b2 and 68 vaccinated with mRNA-1273. Peripheral blood was stimulated with peptides encompassing the entire SARS-CoV-2 Spike sequence. IgG Anti-S antibodies (humoral) were quantified on plasma, and inflammatory cytokines (cellular) were measured after stimulation. We observed a higher response (both humoral and cellular) with the mRNA-1273 vaccine. Stratifying by age and gender, differences between vaccines were observed, especially in women under 48 and men over 48 years old. Therefore, this work could help to set up a vaccination strategy that could be applied to confer maximum immunity.

3.
Front Immunol ; 13: 893576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651624

RESUMO

Due to their suppressive capacity, the adoptive transfer of regulatory T cells (Treg) has acquired a growing interest in controlling exacerbated inflammatory responses. Limited Treg recovery and reduced quality remain the main obstacles in most current protocols where differentiated Treg are obtained from adult peripheral blood. An alternate Treg source is umbilical cord blood, a promising source of Treg cells due to the higher frequency of naïve Treg and lower frequency of memory T cells present in the fetus' blood. However, the Treg number isolated from cord blood remains limiting. Human thymuses routinely discarded during pediatric cardiac surgeries to access the retrosternal operative field has been recently proposed as a novel source of Treg for cellular therapy. This strategy overcomes the main limitations of current Treg sources, allowing the obtention of very high numbers of undifferentiated Treg. We have developed a novel good manufacturing practice (GMP) protocol to obtain large Treg amounts, with very high purity and suppressive capacity, from the pediatric thymus (named hereafter thyTreg). The total amount of thyTreg obtained at the end of the procedure, after a short-term culture of 7 days, reach an average of 1,757 x106 (range 50 x 106 - 13,649 x 106) cells from a single thymus. The thyTreg product obtained with our protocol shows very high viability (mean 93.25%; range 83.35% - 97.97%), very high purity (mean 92.89%; range 70.10% - 98.41% of CD25+FOXP3+ cells), stability under proinflammatory conditions and a very high suppressive capacity (inhibiting in more than 75% the proliferation of activated CD4+ and CD8+ T cells in vitro at a thyTreg:responder cells ratio of 1:1). Our thyTreg product has been approved by the Spanish Drug Agency (AEMPS) to be administered as cell therapy. We are recruiting patients in the first-in-human phase I/II clinical trial worldwide that evaluates the safety, feasibility, and efficacy of autologous thyTreg administration in children undergoing heart transplantation (NCT04924491). The high quality and amount of thyTreg and the differential features of the final product obtained with our protocol allow preparing hundreds of doses from a single thymus with improved therapeutic properties, which can be cryopreserved and could open the possibility of an "off-the-shelf" allogeneic use in another individual.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Transferência Adotiva , Adulto , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Criança , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos
4.
Virulence ; 13(1): 30-45, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967260

RESUMO

Since December 2019, the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. To eradicate it, it is crucial to acquire a strong and long-lasting anti-SARS-CoV-2 immunity, by either natural infection or vaccination. We collected blood samples 12-305 days after positive polymerase chain reactions (PCRs) from 35 recovered individuals infected by SARS-CoV-2. Peripheral blood mononuclear cells were stimulated with SARS-CoV-2-derived peptide pools, such as the spike (S), nucleocapsid (N) and membrane (M) proteins, and we quantified anti-S immunoglobulins in plasma. After 10 months post-infection, we observed a sustained SARS-CoV-2-specific CD4+ T-cell response directed against M-protein, but responses against S- or N-proteins were lost over time. Besides, we demonstrated that O-group individuals presented significantly lower frequencies of specific CD4+ T-cell responses against Pep-M than non O-group individuals. The non O-group subjects also needed longer to clear the virus, and they lost cellular immune responses over time, compared to the O-group individuals, who showed a persistent specific immune response against SARS-CoV-2. Therefore, the S-specific immune response was lost over time, and individual factors might determine the sustainability of the body's defenses, which must be considered in the future design of vaccines to achieve continuous anti-SARS-CoV-2 immunity.


Assuntos
Sistema ABO de Grupos Sanguíneos , COVID-19/sangue , Imunidade Humoral , Células T de Memória , SARS-CoV-2/imunologia , Humanos , Imunidade Celular , Leucócitos Mononucleares , Glicoproteína da Espícula de Coronavírus
5.
Biomedicines ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922629

RESUMO

Regulatory T cells (Tregs), which are characterized by the expression of the transcription factor forkhead box P3 (FOXP3), are the main immune cells that induce tolerance and are regulators of immune homeostasis. Natural Treg cells (nTregs), described as CD4+CD25+FOXP3+, are generated in the thymus via activation and cytokine signaling. Transforming growth factor beta type 1 (TGF-ß1) is pivotal to the generation of the nTreg lineage, its maintenance in the thymus, and to generating induced Treg cells (iTregs) in the periphery or in vitro arising from conventional T cells (Tconvs). Here, we tested whether TGF-ß1 treatment, associated with interleukin-2 (IL-2) and CD3/CD28 stimulation, could generate functional Treg-like cells from human thymocytes in vitro, as it does from Tconvs. Additionally, we genetically manipulated the cells for ectopic FOXP3 expression, along with the TGF-ß1 treatment. We demonstrated that TGF-ß1 and ectopic FOXP3, combined with IL-2 and through CD3/CD28 activation, transformed human thymocytes into cells that expressed high levels of Treg-associated markers. However, these cells also presented a lack of homogeneous suppressive function and an unstable proinflammatory cytokine profile. Therefore, thymocyte-derived cells, activated with the same stimuli as Tconvs, were not an appropriate alternative for inducing cells with a Treg-like phenotype and function.

6.
Transplant Direct ; 7(5): e693, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33928185

RESUMO

Regulatory T cells (Treg) are crucial for the induction and maintenance of graft tolerance. In pediatric heart transplant procedures, the thymus is routinely excised, removing the primary source of T-cell replenishment. Consequently, thymectomy joined to the effects of immunosuppression on the T-cell compartment may have a detrimental impact on Treg values, compromising the intrinsic tolerance mechanisms and the protective role of Treg preventing graft rejection in heart transplant children. METHODS: A prospective study including 7 heart transplant children was performed, and immune cell populations were evaluated periodically in fresh peripheral blood at different time points before and up to 3 y posttransplant. RESULTS: Treg counts decreased significantly from the seventh-month posttransplant. Furthermore, there was a significant increase in effector memory and terminally differentiated effector memory T cells coinciding with the fall of Treg counts. The Treg/Teffector ratio, a valuable marker of the tolerance/rejection balance, reached values around 90% lower than pretransplant values. Additionally, a negative correlation between Treg count and T effector frequency was observed. Particularly, when Treg count decreases below 50 or 75 cells/µL in the patients, the increase in the frequency of T effector CD4+ and CD8+, respectively, experiences a tipping point, and the proportion of T-effector cells increases dramatically. CONCLUSIONS: These results reveal that interventions employed in pediatric heart transplantation (immunosuppression and thymectomy) could induce, as an inevitable consequence, a dysregulation in the immunologic status characterized by a marked imbalance between Treg and T effector, which could jeopardize the preservation of tolerance during the period with the higher incidence of acute rejection.

7.
Front Immunol ; 12: 793142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069575

RESUMO

SARS-CoV-2 has infected more than 200 million people worldwide, with more than 4 million associated deaths. Although more than 80% of infected people develop asymptomatic or mild COVID-19, SARS-CoV-2 can induce a profound dysregulation of the immune system. Therefore, it is important to investigate whether clinically recovered individuals present immune sequelae. The potential presence of a long-term dysregulation of the immune system could constitute a risk factor for re-infection and the development of other pathologies. Here, we performed a deep analysis of the immune system in 35 COVID-19 recovered individuals previously infected with SARS-CoV-2 compared to 16 healthy donors, by flow cytometry. Samples from COVID-19 individuals were analysed from 12 days to 305 days post-infection. We observed that, 10 months post-infection, recovered COVID-19 patients presented alterations in the values of some T-cell, B-cell, and innate cell subsets compared to healthy controls. Moreover, we found in recovered COVID-19 individuals increased levels of circulating follicular helper type 1 (cTfh1), plasmablast/plasma cells, and follicular dendritic cells (foDC), which could indicate that the Tfh-B-foDC axis might be functional to produce specific immunoglobulins 10 months post-infection. The presence of this axis and the immune system alterations could constitute prognosis markers and could play an important role in potential re-infection or the presence of long-term symptoms in some individuals.


Assuntos
COVID-19/imunologia , Convalescença , Células Dendríticas Foliculares/imunologia , Citometria de Fluxo/métodos , Pessoal de Saúde , Ativação Linfocitária/imunologia , Plasmócitos/imunologia , SARS-CoV-2/genética , Células T Auxiliares Foliculares/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Prognóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...